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153, Japan
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Abstract. A new integrable spin chain of the Haldane–Shastry type is introduced. It is
interpreted as the inverse-square interacting spin chain with areflecting end. The lattice sites
of this model consist of the square roots of the zeros of the Laguerre polynomial. Using the
‘exchange operator formalism’, the integrals of motion for the model are explicitly constructed.

Studies of the Calogero–Sutherland model [1], the Haldane–Shastry spin chain [2] and their
variants [3] have provided many new links with other areas of physics and mathematics.
In particular, these models provide exactly solvable models in which the ideas of fractional
exclusion statistics can be tested [4, 5].

In [6], with a view to proving the quantum integrability of the Calogero–Sutherland
model and its rational version, the Calogero–Moser model confined in a harmonic potential
(which we call the Calogero model), Polychronakos proposed the so-calledexchange
operator formalism. His clever formalism is applicable not only to continuum models
but also to spin chain models, and has become a standard technique for the study of the
integrability and spectrum of inverse-square interacting systems [7–13]. Within the exchange
operator formalism, all of the inverse-square interacting spin chain models can be related
to the appropriate continuum inverse-square interacting models withinternal degrees of
freedom (spin). More precisely, the spin chain models are obtained by freezing out the
kinematic degrees of freedom in the corresponding continuum models, and the lattice¶
sites lie at the classical static-equilibrium positions of the continuum models [14–16]. For
example [8, 17], the Haldane–Shastry model is related to the spin Calogero–Sutherland
model [18, 7, 19] whose classical equilibrium positions form a regular lattice on the circle.

Polychronakos [17] has applied his formalism to constructing the new spin chain model
related to the spin Calogero model [7, 10, 11, 20, 21]. We call this model the Polychronakos–
Frahm (PF) model [22, 23]. The lattice sites of the PF model are positioned at the zeros
of the Hermite polynomial, i.e. the spins are no longer equidistant. Against this unusual
property, the spectra of the PF model are equally spaced and therefore simpler than those
of the Haldane–Shastry model. Thus the fractional exclusion statistics for the elementary
excitations of the PF model are more tractable than those of the Haldane–Shastry model [23].

§ E-mail address: yam@yukawa.kyoto-u.ac.jp
‖ E-mail address: otutiya@hep1.c.u-tokyo.ac.jp
¶ In this paper, we use the termlattice in both the usual and an unusual sense. That is, this term does not always
imply translational invariance.
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On the other hand, in [24, 25] another generalization of the spin chain model, the
Haldane–Shastry model with open boundary conditions (theBCN -type Haldane–Shastry
model), was introduced. This model is related to theBCN -type spin Calogero–Sutherland
model [26, 27]. It is now well known that suchBCN -type models can be applicable
to analysing physics with boundaries [28–31]. In particular, one of the authors and
his collaborators have shown that the above models possess the properties of the chiral
Tomonaga–Luttinger liquids [31].

The aim of this paper is twofold. The first is to prove the integrability of theBN -
type spin Calogero model [32] within the exchange operator formalism. The second is to
construct a new integrable spin chain model related to theBN -type spin Calogero model.
This spin chain model can be thought of as the ‘intersection’ of the PF model and the
BCN -type Haldane–Shastry model.

Before turning to the explicit calculation, we shall briefly mention this new integrable
spin chain. The Hamiltonian is given by

HPF =
∑

16j 6=k6N

[
1

(xj − xk)2
Pjk + 1

(xj + xk)2
Pjk

]
+ γ

N∑
j=1

1

x2
j

Pj (1)

whereN is the number of sites andγ ∈ R is a parameter. In the above Hamiltonian we have
introduced theBN -type spin exchange operators for theν-component spin variables [25, 32];
the operatorPjk exchanges the spins at the sitesj andk, the operatorPj is an involution†
for the set of spin variables at the sitej , i.e.Pj

2 = 1, and finally the operatorPjk is defined
by Pjk = PjPkPjk. Also it will be shown that, from the integrability condition of the model,
the lattice sitesxj lie at the square roots of the zeros of the Laguerre polynomialL

(|γ |−1)

N (y)

(see [33] for the notation). It is well known that the Laguerre polynomialL
(α)
N (y) with

α > −1 (= −1) hasN distinct roots, 0< y1 < y2 < · · · < yN (0 = y1 < y2 < · · · < yN )
[33]. Therefore the lattice of the model is well-defined and does not contain negative sites.
Also, it is easy to see that the lattice is not uniform. For example, in the caseN = 4, γ = 2,
the model has the lattice (0.86, 1.60, 2.39, 3.31).

There are several points which should be noticed in (1). Clearly, the Hamiltonian (1) is
not translationally invariant because the lattice is not uniform. Even if we suppose that the
lattice is uniform, the termsPjk/(xj + xk)

2 andPj/x
2
j in (1) break translational invariance.

The termPjk/(xj + xk)
2 represents the interaction between thej th spin and the ‘mirror-

image’ of thekth spin. With an appropriate choice of the representation of the operatorPj ,
the last term in (1) can be regarded as magnetic fields whose magnitudes are proportional
to the inverse-square of the positions of the sites. From these observations, the originx = 0
can be regarded as a reflecting end of the system. Then we call the model with Hamiltonian
(1) the PF model with a reflecting end or theBN -PF model (ifγ = 0, we call it theDN -PF
model).

Consider now the integrability of theBN -type spin Calogero model. We first recall
the BN -type spin Calogero model. The Hamiltonians of theBN -type spin Calogero–Moser
model and theBN -type spin Calogero model are respectively given [32] by

H̄CM =
N∑

j=1

[
−∂j

2 + 1

x2
j

β1(β1 − Mj)

]
+

∑
16j 6=k6N

[
1

(xj − xk)2
β(β − Mjk) +

† This is a formal definition. If we need a more explicit form of the operatorPj , we must chose an appropriate
representation of it. For instance, in the case ofν = 2, the non-trivial representation of the operatorPj can be
chosen as the third component of the Pauli matricesσ 3.
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+ 1

(xj + xk)2
β(β − Mjk)

]
(2)

H̄C = H̄CM + ω2
N∑

j=1

x2
j (3)

whereβ, β1 ∈ R and ω ∈ R>0 are coupling constants, and∂j = ∂/∂xj . In (2), we have
already introduced the operatorsMj, Mjk andMjk(= MjMkMjk) which are called theBN -
type (coordinate) exchange operators, and are defined by the action on the coordinatesxj :

Mjkxj = xkMjk Mjxj = −xjMj . (4)

We remark that the two sets of operators{Mj, Mjk, Mjk} and{Pj , Pjk, Pjk} satisfy the same
relations which are the defining relations for the Weyl group of typeBN [32].

The Hamiltonians (2) and (3) do not contain the terms related directly to the spin. The
spin degrees of freedom are introduced as follows. LetΩs = C∞(CN)⊗V whereV denotes
the space of spins, for example,(Cν)⊗N . Then operatorsMjk, Mj , Pjk andPj naturally act
on this space, and clearlyMjk and Mj commute withPjk and Pj . Next we introduce a
projectionπ which respectively replaces every occurrence ofMjk and Mj by Pjk and Pj

after Mjk and Mj have been moved to the right of the expression. Consider theBN -type
‘bosonic’ subspace

Ω̃s = {f ∈ Ωs | (Mjk − Pjk)f = 0, (Mj − Pj )f = 0}. (5)

For any operatorŌ, the projectionπ leads to a unique operatorO which satisfies
ŌΩ̃s = OΩ̃s and does not contain the coordinate exchange operators. The Hamiltonians
with the spin degrees of freedom are thus given by the operatorsπ(H̄CM) andπ(H̄C). Also,
the spinless, i.e. the one-component case, can be considered by puttingPjk = 1, Pj = 1.
In this case, the conditions in (5) are simply the conditions for theBN -invariance of the
wavefunctions.

First of all, we introduce the operatorsDj for later use:

Dj =
∑
k 6=j

[
1

xj − xk

Mjk + 1

xj + xk

Mjk

]
+ β1

β

1

xj

Mj . (6)

It is easy to show that

MjDj = −DjMj MjkDj = DkMjk (7)

[Dj , Dk] = 0 (8)

[Dj , xk] = δjk

(
−

∑
l 6=j

(Mjl + Mjl) − 2
β1

β
Mj

)
+ (1 − δjk)(Mjk − Mjk). (9)

Next, as in the ordinary case [34, 35], we define theBN -type Dunkl operatorsDj by

Dj = ∂j − βDj . (10)

Using [∂j , xk] = δjk, Mj∂j = −∂jMj , Mjk∂j = ∂kMjk, etc, we can show that theBN -type
Dunkl operatorsDj together with the coordinatesxj satisfy the following relations:

MjDj = −DjMj MjkDj = DkMjk (11)

[Dj, Dk] = 0, [xj , xk] = 0 (12)

[Dj, xk] = δjk

(
1 + β

∑
l 6=j

(Mjl + Mjl) + 2β1Mj

)
− (1 − δjk)β(Mjk − Mjk). (13)
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Finally we introduce another type ofBN -type Dunkl operator:

D±
j = Dj ∓ ωxj (14)

which satisfies similar relations between theDj ’s andxj ’s:

MjD
±
j = −D±

j Mj MjkD
±
j = D±

k Mjk (15)

[D±
j , D±

k ] = 0 (16)

[D+
j , D−

k ] = 2ω[Dj, xk]. (17)

In fact, if we redefineD±
j asD±

j /
√

2ω, then{Dj, xj } and{D+
j , D−

j } have the same algebraic
structure.

We remark that similar results can be obtained by using the gauge transformed versions
of the operatorsDj andD±

j :

D̂j = 1(x)−1Dj1(x) = Dj + β
∑
k 6=j

[
1

xj − xk

+ 1

xj + xk

]
+ β1

1

xj

(18)

D̂±
j = 1̃(x)−1D±

j 1̃(x) = D̂j − (ω ± ω)xj (19)

where1(x) = ∏
j<k(x

2
j − x2

k )
β
∏

l x
β1
l and1̃(x) = 1(x) exp(− 1

2ω
∑

j x2
j ).

As in the ordinary case [7, 17], the integrals of motion for theBN -type (spin) Calogero–
Moser model and theBN -type (spin) Calogero model can be constructed by using the Dunkl
operatorsDj andD±

j , respectively. Moreover, under an appropriate transformation of the
coordinates, the integrals of motion for theBCN -type (spin) Calogero–Sutherland model
are related to the operatorsxjDj . Then we shall unify the construction of these integrals of
motion following [36]†. For this purpose, we introduce the operators

Ξj = (pDj + qxj )(p
′Dj + q ′xj ) (20)

wherep, p′, q, q ′ ∈ C. They satisfy the relations

MjΞj = ΞjMj MjkΞj = ΞkMjk (21)

[Ξj ,Ξk] = (pq ′ − p′q)β(Ξj − Ξk)(Mjk + Mjk). (22)

From the above formulae we can show the key formula

[Ξn
j ,Ξm

k ] = (pq ′ − p′q)β

m∑
a=1

Ξm−a
k (Ξn

j − Ξn
k)Ξ

a−1
j (Mjk + Mjk). (23)

Let us consider the quantities

ϒn =
N∑

j=1

Ξn
j . (24)

Then the involutiveness of theϒn’s is clear if pq ′ − p′q = 0. On the other hand, in
general, using equation (23) and then explicitly antisymmetrizing in the index, we can
prove the involutiveness ofϒn’s, i.e. [ϒn, ϒm] = 0. Moreover, from theBN -symmetry of
ϒn, i.e. [Mjk, ϒn] = [Mj, ϒn] = 0, the projectionsπ(ϒn) are also involutive.

† Precisely speaking, this treatment is not convenient for the case of theBN -type (spin) Calogero–Moser model,
because the involutiveness of integrals is clear from their definition.
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Specializing the parametersp, p′, q and q ′, we define the two sets of the involutive
operators{ICM

n }Nn=1 and{IC
n }Nn=1 corresponding to theBN -type spin Calogero–Moser model

and theBN -type spin Calogero model, respectively:

ICM
n = ϒn

∣∣∣∣p=p′=1
q=q ′=0

=
N∑

j=1

(Dj )
2n (25)

IC
n = ϒn

∣∣∣∣ p=p′=1
−q=q ′=ω

=
N∑

j=1

(D+
j D−

j )n. (26)

Note that, in contrast to the ordinary (spin) Calogero–Moser model, the integralsICM
n depend

only on D2
j . This fact reflects the absence of translational invariance in the Hamiltonian

(2). Note also that theICS
n = ϒn

∣∣∣ p=0,p′=1
q=−1,q ′=0

are related to theBCN -type spin Calogero–
Sutherland model.

The HamiltonianH̄C (H̄CM) is expressed by the operatorICM
1 (IC

1 ):

H̄CM = −ICM
1 (27)

H̄C = −IC
1 + E (0)

N (28)

whereE (0)
N = ω[N + 2β

∑
j<k(Mjk +Mjk)+ 2β1

∑
j Mj ]. It is thus clear that theICM

n ’s are
integrals of motion for theBN -type spin Calogero–Moser model. It remains for us to show
that theIC

n ’s commute withH̄C. This can be checked by using the formula

[H̄C]D±
j ] = ±2ωD±

j . (29)

Hence theBN -type spin Calogero–Moser model and theBN -type spin Calogero model are
integrable. As mentioned, using the projectionπ , we can obtain the corresponding integrals
of motion which depend on the spin variables.

Let us now turn to the spin chain model related to theBN -type spin Calogero model.
We apply the standard technique due to Polychronakos [17] (see also [37, 38]). That is,
we consider the strong coupling limitβ → ∞ in the Hamiltonian (3). Since the repulsion
between particles and also between particles and mirror-image particles become dominant
in the strong coupling limit, particles are enforced to localize with the positionsxj which
are taken to minimize the potential

V (x) = β2ω̃2
N∑

j=1

x2
j + β2

∑
16j 6=k6N

[
1

(xj − xk)2
+ 1

(xj + xk)2

]
+ β2γ 2

N∑
j=1

1

x2
j

. (30)

Here we rescaled the coupling constantω of the harmonic potential in order for the system
to have a non-trivial limit. Also we rescaledβ1 = βγ . Note thatω̃ can be absorbed into
the definition of thexj ’s. Then we setω̃ = 1 hereafter. From∂jV (x) = 0, we can obtain
the result that suchxj ’s satisfy the condition

2
∑
k 6=j

[
1

(xj − xk)3
+ 1

(xj + xk)3

]
+ γ 2 1

x3
j

= xj . (31)

The above formula is equivalent to the condition that theyj = x2
j be zeros of the Laguerre

polynomialL(|γ |−1)

N (y) [16].
In the strong-coupling limitβ → ∞, the elastic modes decouple from the internal

degrees of freedom (the latter constitute the desired spin chain model):

H̄C −→ Hela − βH̄PF. (32)
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Here Hela represents the Hamiltonian for the elastic degrees of freedom andH̄PF is the
Hamiltonian which is obtained by respectively replacingPjk and Pj with Mjk and Mj in
(1), i.e.HPF = π(H̄PF).

Let us define the operators

D±
j = Dj ± xj (33)

Ξj = D+
j D−

j = D2
j − x2

j −
∑
k 6=j

(Mjk + Mjk) − γMj . (34)

The operatorsD±
j can be thought of as the large-β limit of the operatorsD±

j . Thus we
expect that the operatorsIPF

n = ∑N
j=1Ξ

n
j are the integrals of motion for theBN -PF model.

We can show the involutiveness of the operatorsIPF
n along the same argument as those for

theBN -type spin Calogero model. The remaining task is to show the commutativity ofIPF
n

with H̄PF. Clearly, it suffices to show [̄HPF, Ξj ] = 0. This can be proved as follows. It is
easy to show that the following formula holds:

[H̄CM, Dj ] = 0 ⇐⇒
[
−

∑
l

∂l
2 − βH̄PF + β2O, ∂j − βDj

]
= 0 (35)

where

O =
∑

16j 6=k6N

[
1

(xj − xk)2
+ 1

(xj + xk)2

]
+ γ 2

N∑
j=1

1

x2
j

. (36)

Let us consider the expansion of the relation (35) in powers ofβ. Since this relation holds
for all β, each term must separately vanish. Thus the term of orderβ2 gives

[H̄PF, Dj ] = [∂j , O] = −4
∑
k 6=j

[
1

(xj − xk)3
+ 1

(xj + xk)3

]
− 2γ 2 1

x3
j

. (37)

Also direct calculation shows that

[H̄PF, xj ] = −2Dj . (38)

Using the above two formulae (37), (38) and the properties [H̄PF, Mjk] = [H̄PF, Mj ] = 0,
we obtain

[H̄PF, Ξj ] = ([H̄PF, Dj ] + 2xj )Dj + Dj ([H̄PF, Dj ] + 2xj ). (39)

If the xj ’s are chosen to take values in the set of square roots of the zeros of the Laguerre
polynomialL(|γ |−1)

N (y), then we have [̄HPF, Dj ] + 2xj = 0 (⇔ (31)), hence [H̄PF, Ξj ] = 0.
Therefore we have proved the integrability of theBN -PF model and have obtained the

set of the integrals of motion{π(IPF
n )}Nn=1 for this model. For example

π(IPF
1 ) = −EN −

[ ∑
16j 6=k6N

(Pjk + Pjk) + 2γ

N∑
j=1

Pj

]
(40)

whereEN ∈ R>0 is given by

EN =
N∑

j=1

x2
j +

∑
16j 6=k6N

[
1

(xj − xk)2
+ 1

(xj + xk)2

]
+ γ 2

N∑
j=1

1

x2
j

. (41)
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Finally, we would like to make some comments on algebraic interpretations of the results
presented here. Our construction naturally leads to algebras of integrals of motion. For
example, the Virasoro-like structure is given by

[Jn, Jm] = 0 (42)

[Ln, Jm] = −mJn+m (43)

[Ln, Lm] = (n − m)Ln+m (44)

where

Jn = ICM
n (IC

n /(2ω)n) (45)

Ln = 1

2

N∑
j=1

xjD
2n+1
j

(
1

2

N∑
j=1

D−
j (D+

j )2n+1/(2ω)n+1

)
. (46)

Note that in (46) the total degree of the operator is always even as the polynomial ofxj

and Dj (D−
j and D+

j ). This fact reflects the absence of translational invariance. We can
also construct the algebra of the integrals of motion related to theW∞ algebra.

Other important features of theBN -type spin Calogero model and theBN -PF model are
the existence of the spectrum generating algebras and the twisted Yangian symmetries. One
of the authors has shown that the spectra of theBN -type spin Calogero model are equally
spaced [32]. It is easy to see that the same is true for theBN -PF model. This is caused by
the existence of the spectrum generating algebras (29) and

[H̄PF, D±
j ] = ∓2D±

j . (47)

Moreover numerical studies show that theBN -PF model possesses the ‘super-multiplet’
structure. The algebra underlying this structure is the twisted Yangian (see, for example,
[39]). As in the ordinary cases [40, 41, 23, 36], the twisted Yangian symmetries of theBN -
type spin Calogero model and theBN -PF model are easily seen from the transfer matrices
of these systems which can be constructed by the Dunkl operatorsD±

j andD±
j .

Acknowledgments

We would like to thank H Awata, N Kawakami, Y Matsuo, S Odake and S-K Yang for
discussions. TY was supported by the COE (Centre of Excellence) researchers program of
the Ministry of Education, Science and Culture, Japan.

References

[1] Calogero F 1969J. Math. Phys.10 2197
Sutherland B 1970J. Math. Phys.12 246, 251; 1971Phys. Rev.A 4 2019; 1972Phys. Rev.A 5 1372

[2] Haldane F D M 1988Phys. Rev. Lett.60 635
Shastry B S 1988Phys. Rev. Lett.60 639

[3] For reviews, see the following papers and references therein:
Kawakami N 1994Prog. Theor. Phys.91 189
Haldane F D M 1994Correlation Effects in Low Dimensional Electron Systemsed A Okiji and N Kawakami

(Berlin: Springer)
[4] Haldane F D M 1991Phys. Rev. Lett.66 1529
[5] Bernard D and Wu Y-S 1995New Developments of Integrable Systems and Long-Ranged Interaction Models

ed M-L Ge and Y-S Wu (Singapore: World Scientific)
[6] Polychronakos A P 1992Phys. Rev. Lett.69 703



3984 T Yamamoto and O Tsuchiya

[7] Minahan J A and Polychronakos A P 1993Phys. Lett.302B 265
[8] Fowler M and Minahan J A 1993Phys. Rev. Lett.70 2325
[9] Brink L, Hansson T H and Vasiliev M A 1992 Phys. Lett.286B 109

[10] Brink L and Vasiliev M A 1993 Mod. Phys. Lett.8A 3583
[11] Dodlov O V, Konstein S E and Vasiliev M A 1993 JETP Lett.58 855
[12] Wang D F and Gruber C 1994Phys. Rev.B 49 16712
[13] Ujino H and Wadati M 1995J. Phys. Soc. Japan64 4121
[14] Calogero F 1977Lett. Nuovo Cimento19 505; 20 251; 489; 1983Nonlinear Phenomena (Lecture Notes in

Physics 189)(Berlin: Springer)
[15] Perelomov A M 1978 Ann. Inst. H. Poincar´e 28 407
[16] Ahmed S, Brushi M, Calogero F, Olshanetsky M A and Perelomov A M 1979 Nuovo CimentoB 49 173
[17] Polychronakos A P 1993Phys. Rev. Lett.70 2329; 1994Nucl. Phys.B 419 553
[18] Ha Z N C andHaldane F D M 1992Phys. Rev.B 46 9359
[19] Hikami K and Wadati M 1993J. Phys. Soc. Japan62 4203
[20] Hikami K and Wadati M 1993J. Phys. Soc. Japan62 469; Phys. Lett.173A 263
[21] Vacek K, Okiji A and Kawakami N 1994J. Phys. A: Math. Gen.27 L201; Phys. Rev.B 49 4635
[22] Frahm H 1993J. Phys. A: Math. Gen.26 L437
[23] Hikami K 1995Nucl. Phys.B 441 530
[24] Simons B D and Altshuler B L 1994 Phys. Rev.B 50 1102
[25] Bernard D, Pasquier V and Serban D 1995Europhys. Lett.30 301
[26] Olshanetsky M A and Perelomov A M 1981 Phys. Rep.71 313; 1983Phys. Rep.94 313
[27] Cherednik I 1994Adv. Math.106 65
[28] Kapustin A and Skorik S 1994Phys. Lett.196A 47
[29] Beenakker C W J andRejaei B 1994Phys. Rev.B 49 7499
[30] Caselle M 1995Phys. Rev. Lett.74 2776
[31] Yamamoto T, Kawakami N and Yang S-K 1996J. Phys. A: Math. Gen.29 317
[32] Yamamoto T 1995Phys. Lett.208A 293
[33] Szeg̈o G 1939 Orthogonal Polynomials (American Mathematical Society Colloquium Publishing 23)

(Providence, RI: American Mathematical Society)
[34] Dunkl C F 1989Trans. Am. Math. Soc.311 167
[35] Kuznetsov V B 1995 Hidden symmetry of the quantum Calogero–Moser systemPreprint solv-int/9509001
[36] Bernard D, Hikami K and Wadati M 1995New Developments of Integrable Systems and Long-Ranged

Interaction Modelsed M-L Ge and Y-S Wu (Singapore: World Scientific)
[37] Sutherland B and Shastry B S 1993Phys. Rev. Lett.71 5
[38] Kato Y and Kuramoto Y 1995Phys. Rev. Lett.74 1222
[39] Molev A, Nazarov M and Olshanskii G 1994 Yanginas and Classical Lie AlgebrasPreprint hep-th/9409025
[40] Haldane F D M, Ha Z N C, Talstra J C, Bernard D and Pasquier V 1992Phys. Rev. Lett.69 2021
[41] Bernard D, Gaudin M, Haldane F D M andPasquier V 1993J. Phys. A: Math. Gen.26 5219


